Το Βαρόμετρο – Πανεπιστήμιο της Κοπεγχάγης

Αφιερωμένο εξαιρετικά σε όσους πιστεύουν στην μοναδική (τους) αλήθεια…

Το κείµενο που ακολουθεί αφορά µια ερώτηση που ήταν θέµα σε εξετάσεις Φυσικής στο Πανεπιστήμιο της Κοπεγχάγης:

«Να περιγράψετε πώς µπορούµε να µετρήσουµε το ύψος ενός ουρανοξύστη χρησιµοποιώντας ένα βαρόµετρο».

Ένας φοιτητής απάντησε: «Δένετε ένα µακρύ σπάγκο στο λαιµό του ßαρόµετρου και στη συνέχεια κατεβάζετε το ßαρόµετρο από την ταράτσα µέχρι να εγγίζει το έδαφος. Το ύψος του κτιρίου θα ισούται µε το µήκος του νήµατος συν το µήκος του βαρόµετρου».

Αυτή η πρωτότυπη απάντηση εξόργισε τόσο τον εξεταστή, ώστε αυτός έκοψε το φοιτητή στο συγκεκριμένο µάθηµα. Ο φοιτητής προσέφυγε στις αρχές του Πανεπιστηµίου, ισχυριζόµενος ότι η απάντησή του ήταν αναµφίβολα σωστή και ότι αδίκως κόπηκε.

Το Πανεπιστήµιο όρισε έναν άλλο εξεταστή να διερευνήσει το θέµα και να αποφασίσει εάν έπρεπε να κοπεί ο φοιτητής ή όχι. Ο κριτής αυτός θεώρησε ότι η απάντηση που δόθηκε ήταν πράγµατι σωστή, αλλά δεν φανέρωνε καµία αξιοσηµείωτη γνώση Φυσικής.

Για να διαλευκανθεί τελείως το θέµα, αποφασίστηκε να καλέσουν το φοιτητή και να του αφήσουν έξι λεπτά, µέσα στα οποία αυτός θα έπρεπε να δώσει µια προφορική απάντηση που να µην είναι τόσο απλοϊκή, αλλά να δείχνει κάποια εξοικείωση µε τις βασικές αρχές της Φυσικής.

Για πέντε λεπτά ο φοιτητής έµενε σιωπηλός, βαθιά απορροφηµένος στις σκέψεις του. Ο εξεταστής του θύµισε ότι ο χρόνος τελειώνει και ο φοιτητής απάντησε ότι είχε στο µυαλό του µερικές ιδιαίτερα σχετικές απαντήσεις, αλλά δε µπορούσε να αποφασίσει ποια να χρησιµοποιήσει. Στην προτροπή να βιαστεί, απάντησε ως εξής:

«Κατ’ αρχήν, θα µπορούσαµε να ανεßάσουµε το ßαρόµετρο στην ταράτσα του ουρανοξύστη, να το αφήσουµε να πέσει και να µετρήσουµε το χρόνο που κάνει µέχρι να φτάσει στο έδαφος. Το ύψος του κτιρίου µπορεί να υπολογιστεί τότε από τον τύπο: H=(gt 2)/2. Όµως, δε θα το συνιστούσα γιατί θα ήταν κρίµα για το βαρόµετρο».

«Μια άλλη εναλλακτική απάντηση» είπε ο φοιτητής «είναι η εξής: Εάν υπάρχει ηλιοφάνεια, θα µπορούσαµε να µετρήσουµε το ύψος του βαρόµετρου, να το στήσουµε όρθιο στο έδαφος και µετά να µετρήσουµε του µήκος της σκιάς του. Στη συνέχεια µετρούµε το µήκος της σκιάς του ουρανοξύστη, και µε απλό τρόπο µπορούµε να υπολογίσουµε το πραγµατικό ύψος του ουρανοξύστη µε αριθµητική αναλογία».

«Αλλά, εάν θα θέλατε να αντιµετωπίσετε το θέµα µε ιδιαίτερα επιστηµονικό τρόπο, θα µπορούσατε να δέσετε ένα µικρού µήκους νήµα στο βαρόµετρο και να το θέσετε σε ταλάντωση σαν εκκρεµές, πρώτα στο έδαφος και µετά στην ταράτσα του ουρανοξύστη. Το ύψος θα µπορούσε να βρεθεί µετρώντας και συγκρίνοντας τις δύο περιόδους, οι οποίες είναι αντιστρόφως ανάλογες των τετραγωνικών ριζών των επιταχύνσεων της βαρύτητας στο έδαφος και στο ύψος του ουρανοξύστη. Η επιτάχυνση της βαρύτητας εξαρτάται µε τη σειρά της από το ύψος από την επιφάνεια της γης και συνεπώς γνωρίζοντας την επιτάχυνση της βαρύτητας στην ταράτσα βρίσκουµε το ζητούµενο ύψος».

«Α!»είπε πάλι ο φοιτητής, «Υπάρχει κι ένας άλλος τρόπος, όχι κακός: Αν ο ουρανοξύστης διαθέτει εξωτερική σκάλα κινδύνου, θα ήταν ευκολότερο να ανεßεί κανείς τη σκάλα βάζοντας διαδοχικά σηµάδια επαναλαµβάνοντας το µήκος του βαρόµετρου. Μετά θα ήταν εύκολο να υπολογίσει το ύψος του ουρανοξύστη προσθέτοντας όλα αυτά τα µήκη.

Αλλά, αν απλώς θα θέλατε να είστε ιδιαίτερα βαρετός δίνοντας µια ορθόδοξη απάντηση, θα µπορούσατε να µετρήσετε την ατµοσφαιρική πίεση στην ταράτσα και στο έδαφος και να µετατρέψετε τη διαφορά των millibars σε ανάλογη διαφορά σε µέτρα.»

«Όµως, επειδή ως φοιτητές παροτρυνόµαστε συνέχεια να ασκούµε την ανεξαρτησία του µυαλού µας και να εφαρµόζουµε επιστηµονικές µεθόδους, αναµφίßολα ο καλύτερος τρόπος θα ήταν να χτυπήσουµε την πόρτα του θυρωρού και να του πούµε: Αν θα ήθελες να έχεις ένα ωραίο καινούριο βαρόµετρο, θα σου χαρίσω αυτό αν µου πεις το ύψος του ουρανοξύστη».

Ο φοιτητής ήταν ο Niels Bohr (http://en.wikipedia.org/wiki/Niels_Bohr), ο µόνος Δανός που τιµήθηκε µε το βραβείο Νόµπελ Φυσικής……

==========================================

To παραπάνω κείμενο είναι ένα «σπαμ-ιστορίας» πολύ παλιό από το 1958 και κυκλοφόρησε στο ιντερνετ το 1999. Παρ όλο που έχει αποδειχθεί ότι είναι ιστορική αναλήθεια (spam, hoax) παραμένει μια μια ωραία ιστορία…

Several years ago, SCI added the story that follows below to its online library. Unfortunately, the source of the story was not captured and is now lost. A biographical sketch of Bohr states: “In 1911, Niels Bohr earned his PhD in Denmark with a dissertation on the electron theory of metals. Right afterwards, he went to England to study with J.J. Thomson, who had discovered the electron in 1897. Most physicists in the early years of the twentieth century were engrossed by the electron, such a new and fascinating discovery. Few concerned themselves much with the work of Max Planck or Albert Einstein. Thomson wasn’t that interested in these new ideas, but Bohr had an open mind. Bohr soon went to visit Ernest Rutherford (a former student of Thomson’s) in another part of England, where Rutherford had made a brand-new discovery about the atom.”In November of 2008, SCI received the note immediately below regarding the authenticity of the story attributed to Rutherford

Angels on a PinA Modern Parable
by Alexander CalandraSaturday Review
December 21, 1968
Some time ago I received a call from a colleague who asked if I would be the referee on the grading of an examination question. He was about to give a student a zero for his answer to a physics question, while the student claimed he should receive a perfect score and would if the system were not set up against the student: The instructor and the student agreed to submit this to an impartial arbiter, and I was selected.I went to my colleague’s office and read the examination question: “Show how it is possible to determine the height of a tall building with the aid of a barometer.”The student had answered: “Take a barometer to the top of the building, attach a long rope to it, lower the barometer to the street and then bring it up, measuring the length of the rope. The length of the rope is the height of the building.”I pointed out that the student really had a strong case for full credit since he had answered the question completely and correctly. On the other hand, if full credit was given, it could well contribute to a high grade for the student in his physics course. A high grade is supposed to certify competence in physics, but the answer did not confirm this. I suggested that the student have another try at answering the question. I was not surprised that my colleague agreed, but I was surprised that the student did.I gave the student six minutes to answer the question with the warning that the answer should show some knowledge of physics. At the end of five minutes, he had not written anything. I asked if he wished to give up, but he said no. He had many answers to this problem; he was just thinking of the best one. I excused myself for interrupting him and asked him to please go on. In the next minute he dashed off his answer which read:

“Take the barometer to the top of the building and lean over the edge of the roof. Drop that barometer, timing its fall with a stopwatch. Then using the formula S = ½at², calculate the height of the building.”

At this point I asked my colleague if he would give up. He conceded, and I gave the student almost full credit.

In leaving my colleague’s office, I recalled that the student had said he had many other answers to the problem, so I asked him what they were. “Oh yes,” said the student. “There are a great many ways of getting the height of a tall building with a barometer. For example, you could take the barometer out on a sunny day and measure the height of the barometer and the length of its shadow, and the length of the shadow of the building and by the use of a simple proportion, determine the height of the building.”

“Fine,” I asked. “And the others?”

“Yes,” said the student. “There is a very basic measurement method that you will like. In this method you take the barometer and begin to walk up the stairs. As you climb the stairs, you mark off the length of the barometer along the wall. You then count the number of marks, and this will give you the height of the building in barometer units. A very direct method.”

“Of course, if you want a more sophisticated method, you can tie the barometer to the end of a string, swing it as a pendulum, and determine the value of ‘g’ at the street level and at the top of the building. From the difference of the two values of ‘g’ the height of the building can be calculated.”

Finally, he concluded, there are many other ways of solving the problem. “Probably the best,” he said, “is to take the barometer to the basement and knock on the superintendent’s door. When the superintendent answers, you speak to him as follows: “Mr. Superintendent, here I have a fine barometer. If you tell me the height of this building, I will give you this barometer.”

At this point I asked the student if he really did know the conventional answer to this question. He admitted that he did, said that he was fed up with high school and college instructors trying to teach him how to think, using the “scientific method,” and to explore the deep inner logic of the subject in a pedantic way, as is often done in the new mathematics, rather than teaching him the structure of the subject. With this in mind, he decided to revive scholasticism as an academic lark to challenge the Sputnik-panicked classrooms of America.

Πηγή 

About Antikleidi Blog

Antikleidi blog antikleidiblog@gmail.com
This entry was posted in Ιστορία και μύθοι. Bookmark the permalink.

Σχολιάστε

Εισάγετε τα παρακάτω στοιχεία ή επιλέξτε ένα εικονίδιο για να συνδεθείτε:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s